If A = {x/6x² + x -15 = 0}
B = {x/2x² - 5x - 3 = 0}
C = {x/2x² - x- 3} then
find
i) (A ∪ B ∪ C)
ii) (A ∩ B ∩ C)
Answers
Answer:
i) {-5/3, -1, -1/2, 3/2, 3}
ii) Ф
Step-by-step explanation:
Hi,
Given If A = {x/6x² + x -15 = 0}
A is set of all x satisfying 6x² + x -15 = 0
⇒(3x + 5)(2x - 3) = 0
⇒ x = -5/3 or 3/2
so, A = { -5/3, 3/2}
Given B = {x/2x² - 5x - 3 = 0}
B is set of all x satisfying 2x² - 5x - 3 = 0
⇒ (2x + 1)(x - 3) = 0
⇒ x = -1/2 or 3
Hence, B = { -1/2, 3}
Given C = {x/2x² - x- 3 = 0}
C is set of all x satisfying 2x² - x- 3 = 0
⇒(2x - 3)(x + 1) = 0
⇒ x = 3/2 or -1
So, C = { -1, 3/2}
To find
i) (A ∪ B ∪ C)
= { -5/3, 3/2} ∪ { -1/2, 3} ∪ { -1, 3/2}
= {-5/3, -1, -1/2, 3/2, 3}
ii) (A ∩ B ∩ C)
= { -5/3, 3/2} ∩ { -1/2, 3} ∩ { -1, 3/2}
=Ф (empty set since there is no common element in all 3 sets together.
Hope, it helps !
Answer:
Step-by-step explanation:
First the given sets are written in list form.
Then only we can find out union and intersection easily.
A = {x/6x² + x -15 = 0}
A= {x/(3x+5)(2x-3)=0}
A = {-5/3, 3/2}
B = {x/2x² - 5x - 3 = 0}
B = {x/ (x-3)(2x+1)=0}
B = {3, -1/2}
C = {x/2x² - x- 3}
C ={x/(2x-3)(x+1)=0}
C ={3/2, -1}
i) A∪B∪C
= {-5/3, -1, -1/2, 3/2, 3}
ii)A ∩ B ∩ C
= { }