If A1, A2, A3 ,............... An-1, An are in an A.P then show that 1/A1An + 1/A2 An-1 + 1/A3 An-2.......... +1/AnA1 = 2/A1 + An ( 1/A1 + 1/A2+............1/An).
Answers
Answered by
86
A₁ , A₂ , A₃ , A₄ .....An are in AP
so,
we can write,
similarly,
.................
..........................
add all equations ,
Then,
= 1/K[1/A₁ + 1/An ] + 1/K[1/A₂+ 1/Aₙ₋₁ ] + ............+ 1/K[ 1/An + 1/A₁ ]
= 2/K[ 1/A₁ + 1/A₂ + 1/A₃ + 1/A₄ + ........+ 1/An]
Now, put K = (A₁ + An)
Then, = 2/(A₁ + An) [ 1/A₁ + 1/A₂ + 1/A₃ + 1/A₄ + ....... + 1/An ]
Hence, LHS = RHS
so,
we can write,
similarly,
.................
..........................
add all equations ,
Then,
= 1/K[1/A₁ + 1/An ] + 1/K[1/A₂+ 1/Aₙ₋₁ ] + ............+ 1/K[ 1/An + 1/A₁ ]
= 2/K[ 1/A₁ + 1/A₂ + 1/A₃ + 1/A₄ + ........+ 1/An]
Now, put K = (A₁ + An)
Then, = 2/(A₁ + An) [ 1/A₁ + 1/A₂ + 1/A₃ + 1/A₄ + ....... + 1/An ]
Hence, LHS = RHS
Similar questions