If A1 AND A2 ARE TWO NON COLLINEAR UNIT VECTOR. AND IF |A1+A2|=√3 THEN THE VALUE OF (A1-A2).(2A1-A2) IS.
Answers
Answered by
134
Here is what you have to do If A1 AND A2 ARE TWO NON-COLLINEAR UNIT VECTOR. AND IF |A1+A2|=√3 THEN THE VALUE OF (A1-A2).(2A1-A2) IS.
|a1+a2|=√3
|a1+a2|2=3
(a1+a2).(a1+a2)=3
a1.a1+a2.a2+ 2a1.a2
|a1|2+|a2|2+2a1.a2=3
1+1+2a1.a2=3 (unit vectors)
a1.a2=1/2
(a1-a2).(2a1+a2)=2a1.a1+a1.a2-2a1.a2-a2.a2
=2|a1|2-|a2|2-a1.a2
=2-1-1/2=1/2
So the answer is ½
Answered by
42
Answer:(a1 - a2). (2a1 +a2) is
(a1 + a2) = √a1² + a2² + 2a1a2cosΦ
√3 = √1+1+2cosΦ
√3 = 2cosΦ/2
CosΦ/2 = √3/2
Φ/2 = 30°
Φ = 60°
(a1-a2) . (2a1+ a2)
2a²-(a1 . a2)+2(a1.a2)-2a2² = 0
2+a1a2cosΦ-2 = 0
2+cosΦ-2 = 0
CosΦ = 0
Cos 60° = 1/2.
Answer is 1/2
Explanation:
Similar questions