if a² - 3a -1 = 0 then find a² + 1/a²
Answers
Answered by
34
a² - 3a -1= 0
a² - 1 = 3a
(a² - 1)/a = 3a/a. {dividing the equation by a}
a - 1/a = 3
a² + 1/a² - 2 = (a-1/a)²
a² + 1/a² - 2 = (3)²
a² + 1/a² - 2 = 9
a² + 1/a² = 11
Answered by
11
Step-by-step explanation:
a² - 3a - 1 = 0
=> a² - 1 = 3a
From the given equation divide by a from both side.
a² - 1 = 3a
=> (a² - 1 ) / a = 3a / a
=> a - 1/a = 3
We know,
( a - 1/a)² = a² + 1/a² - 2 { where a ≠ 0}
=> (a - 1/a)² + 2 = a² + 1/a²
=> 3² + 2 = a² + 1/a² { since, (a - 1/a)² = 3) }
=> 9 + 2 = a² + 1/a²
=> 11 = a² + 1/a²
Hope it will help
Attachments:
Similar questions