If (a² + b²) x² + 2 (ac + bd) x + c² + d² = 0 has no real roots, then
A. ad = bc
B. ab = cd
C. ac = bd
D. ad ≠ bc
Answers
Answered by
5
D. ad ≠ bc
Step-by-step explanation:
(a² + b²) x² + 2 (ac + bd) x + c² + d² = 0 has no real roots.
d = b² - 4ac
= 4(ac + bd)² - 4(a²+b²)(c²+d²)
=4(a²c² +b²d² -abcd) -4(a²c² + b²d² + a²d² + b²c²)
= -4(a²d² +b²c² - 2abcd)
= -4(ad - bc)²
D is less than zero, a negative. So ad ≠ bc.
Option D is the answer.
Similar questions