Math, asked by kumdeepak65, 1 year ago

If a3 =81 b3=72 then find ab=?

Answers

Answered by Anonymous
42
Given :

a³ = 81

b³ = 72

To Find : ab

Solution :

a³ = 81

b³ = 72

 \sqrt[3]{81}  \times  \sqrt[3]{72}  \\  \sqrt[3]{81 \times 72}  \\  \sqrt[3]{3 \times 3 \times 3 \times 3 \times 2 \times 2 \times 2 \times 3 \times 3}  \\  \sqrt[3]{ {3}^{3}  \times  {3}^{3} \times  {2}^{3}  }  \\ 3 \times 3 \times 2 \\ 18
The required Value of ab = 18 .

#Be Brainly !!
Answered by Shubhendu8898
17

Given ,

a³ = 81

a³ = 3 × 3 × 3 ×3

a=\sqrt[3]{3\times3\times3\times3}\\\;\\a=\sqrt[3]{3^{3}\times3}\\\;\\a=3\times\sqrt[3]{3}\\\;\\a=3\times3^{\frac{1}{3}}\\\;\\Similarly,\\\;\\b^{3}=72\\\;\\b^{3}=3\times3\times2\times2\times2\\\;\\b=\sqrt[3]{3\times3\times2\times2\times2}\\\;\\b=\sqrt[3]{2^{3}\times3^{2}}\\\;\\b=2\times3^{\frac{2}{3}}

Now,

ab=(3\times3^{\frac{1}{3}})\times(2\times3^{\frac{2}{3}}\\\;\\ab=(3\times2)\times(3^{\frac{1}{3}}\times3^{\frac{2}{3}})\\\;\\ab=(6)\times(3^{\frac{1}{3}+\frac{2}{3}})\\\;\\ab=6\times3^{\frac{2+1}{3}}\\\;\\ab=6\times3^{\frac{3}{3}}\\\;\\ab=6\times3\\\;\\ab=18

ab = 18

Similar questions
English, 1 year ago