If ab+bc+ca =0, then find the value of :
1/(a² – bc) + 1/(b² – ca) + 1/(c² – ab)
Answers
1 / (a² - bc) + 1 / (b² - ca) + 1 / (c² - ab) = 0
• Given, ab + bc + ca = 0
or, ab = - bc - ca - (i)
or, bc = - ab - ca - (ii)
or, ca = - ab - bc - (iii)
• Therefore, 1 / (a² - bc) = 1 / {a² - (-ab - ca)} from (i)
or, 1 / (a² - bc) = 1 / (a² + ab + ca)
or, 1 / (a² - bc) = 1 / { a (a + b + c) } - (iv)
• Similarly, 1 / (b² - ca) = 1 / {b² - (- ab - bc)} from (ii)
or, 1 / (b² - ca) = 1 / (b² + ab + bc)
or, 1 / (b² - ca) = 1 / { b (b + a + c) } - (v)
• Similarly 1 / (c² - ab) = 1 / {c² - (-bc - ca)} from (iii)
or, 1 / (c² - ab) = 1 / (c² + bc + ca)
or, 1 / (c² - ab) = 1 / { c (c + b + a) } - (vi)
• Now, adding (iv), (v), and (vi), we get,
1 / { a (a + b + c) } + 1 / { b (b + a + c) } + 1 / { c (c + b + a) }
or, (bc + ac + ab) / {abc (a + b + c)}
or, 0 / {abc (a + b + c)} [ Given, ab + bc + ca = 0]
or, 0
• Therefore,
1 / (a² - bc) + 1 / (b² - ca) + 1 / (c² - ab) = 0