Math, asked by ljtradev1930, 18 days ago

If ABC is an equilateral triangle having sides 24cm. If the centroid O is the centre of the circle, then radius of circle is *

Answers

Answered by MysticSohamS
0

Answer:

hey here is your answer

pls mark it as brainliest

Step-by-step explanation:

so \: here \: ABC \:  is  \: an \:  equilateral  \: triangle  \: of \: side \: 24.cm \: \: which \: is \: inscribed \: in \: circle \: with \: centre \: O

so \: we \: can \: say \: that \:the \: given \: circle \: circumscribes \: equilateral \: triangle \: ABC \\ so \: thus \: AO \: would \: be \: our \: circumradius \\ so \: we \: know \: that \:  \\ circumradius \: of \: an \: equilateral  = side \:  \div  \sqrt{3}  \\ thus \: then \: accordingly \\ AO = AB \div  \sqrt{3}  \\  = 24 \div  \sqrt{3}  \\ rationalising \: the \: denominator \\ we \: get \: thus \\ AO = 24 \div  \sqrt{3}  \times  \sqrt{3}  \div  \sqrt{3}  \\  = 24  \sqrt{3}  \times  \sqrt{3}  \div  \sqrt{3}  \\  = 24 \sqrt{3}  \div  \sqrt{3}  \times  \sqrt{3}  \\  = 24 \sqrt{3}  \div 3 \\  = 8 \sqrt{3}  \\  = 8 \times 1.73 \\  = 13.84.cm

hence \:  \: radius \: of \: equilateral \:  triangle \: ABC \: of \: side \: 24.cm \: is \: 8 \sqrt{3} .cm \: ie \: approximately \: 13.84.cm

Similar questions