Math, asked by reashmaramani, 3 months ago

if alapa and beta are the zeros of the polynomial 2x²-5x+7 then find the value of alapa power -1 + beta power -1​

Answers

Answered by 12thpáìn
314

Given that

  • Polynomial p(x)= 2x²-5x+7
  •  \sf \alpha \:  and \:  \beta  \: are \: the \: zeroes \: of \: polynomial \: p(x)\\

To Find

  •  { \alpha }^{ - 1}  +   { \beta }^{ - 1}\\

Solution

\\P(x)= 2x²-5x+7\\

a=2 \ \ \ \ \ b= -5\ \ \ \ \ \ \ and ~~~~~~c=7

\\\gray{Sum \:  of \:  Zeros \:  ( \alpha  +  \beta ) =  \cfrac{ - b}{a}}

\gray {Sum \:  of \:  Zeros \:  ( \alpha  +  \beta ) =  \cfrac{ - ( - 5)}{2}}

\gray{ Sum \:  of \:  Zeros \:  ( \alpha  +  \beta ) =  \cfrac{ 5}{2}} \\

\\\gray {Product \:  of \:  zeros \:  (\alpha  \beta ) =  \frac{c}{a}}

\gray{ Product \:  of \:  zeros \:  (\alpha  \beta ) =  \cfrac{7}{2}}\\

 \\\\→   \sf{ \alpha }^{ - 1}  +  { \beta }^{ - 1}=  \cfrac{1}{ \alpha }  +  \cfrac{1}{ \beta }

 →  \sf { \alpha }^{ - 1}  +  { \beta }^{ - 1}=   \cfrac{ \beta  +  \alpha }{ \alpha  \beta }

 → \sf  { \alpha }^{ - 1}  +  { \beta }^{ - 1}=    \dfrac{ \frac{5}{2} }{ \frac{7}{2} }

 →\sf   { \alpha }^{ - 1}  +  { \beta }^{ - 1}=    \cfrac{5}{2}  \times  \cfrac{2}{7}

→  \bf { \alpha }^{ - 1}  +  { \beta }^{ - 1}=    \cfrac{5}{7}\\\\

Similar questions