If alfa and beta are the zeros of a polynomial x2-4root3x+3, then find the value of alfa+beta-alfa beta.
Answers
Answered by
18
Hi friend,
___________________________
Given, œ,ß are the zeros of a polynomial x²-4√3x+3
→we know that œ+ß=-b/a=4√3
ϧ=c/a=3
Now, œ+ß-œß=4√3-3
so, the value is 4√3-3
__________________________
I hope this will help u ;)
___________________________
Given, œ,ß are the zeros of a polynomial x²-4√3x+3
→we know that œ+ß=-b/a=4√3
ϧ=c/a=3
Now, œ+ß-œß=4√3-3
so, the value is 4√3-3
__________________________
I hope this will help u ;)
Answered by
24
Hey there !!!!
P(x) = x²-4√3x+3
α,β are zeroes of polynomial P(x).
In a quadratic polynomial ax²+bx+c=0
Sum of zeroes α,β is
α+β=-b/a
Product of zeroes
αβ=c/a.
Now comparing ax²+bx+c with x²-4√3x+3
we get a=1 b=-4√3 c=3
α+β-αβ=-b/a-c/a = -(-4√3)-3/1= 4√3-3.
So, α+β-αβ=4√3-3.
Hope this helps you ......
P(x) = x²-4√3x+3
α,β are zeroes of polynomial P(x).
In a quadratic polynomial ax²+bx+c=0
Sum of zeroes α,β is
α+β=-b/a
Product of zeroes
αβ=c/a.
Now comparing ax²+bx+c with x²-4√3x+3
we get a=1 b=-4√3 c=3
α+β-αβ=-b/a-c/a = -(-4√3)-3/1= 4√3-3.
So, α+β-αβ=4√3-3.
Hope this helps you ......
MushtaqAhmad:
Nice
Similar questions