Math, asked by Haripriyahp, 1 year ago

If alpha and beta are the roots of polynomial x2 + 3x + 2 then
find alpha power 4 +beta power 4

Answers

Answered by Ramanujmani
4
heya..!!!!!


x² + 3x + 2

=> x² + 2x + x + 2

=> x(x+2) + (x+2)

=> (x+1)(x+2)

=> x = -1 = alpha

=> (alpha)⁴ = (-1)⁴ = 1

AND,

x = -2 = beta

=> (beta)⁴ = (-2)⁴ = (-2)(-2)(-2)(-2)

=> 16

alpha ⁴ + beta ⁴ = 1 + 16 = 17

Answered by BrainlyConqueror0901
85

Answer:

\huge{\pink{\boxed{\green{\sf{\therefore \alpha^{4}+\beta^{4}=17}}}}}

Step-by-step explanation:

\huge{\pink{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}

 \:  \:  \:  \:   {\orange{given}} \\  {\pink{ \boxed {\green{ {x}^{2} + 3x + 2 = 0 \: has \: two \: roots  \: \alpha  \: and \:   \beta  }}}} \\  \\  \:  \: { \blue{to \: find}} \\ {\purple{\boxed{\red{{ \alpha }^{4} +  { \beta }^{4} =   }}}}

According to given question:

find roots of the eqn:

Solve the eqn by middle term spliting:

 \to {x}^{2}  + 3x + 2 = 0 \\  \to {x}^{2}  + 2x + x + 2 = 0 \\  \to x(x  + 2) + 1(x + 2) = 0 \\ \to(x + 2)(x + 1) = 0 \\  \\  \to \alpha  = x + 2 = 0 \\  { \boxed{\to  \alpha  = x =  - 2 }}\\  \\  \to  \beta  = x + 1 = 0 \\ { \boxed {\to \beta  = x =  - 1}} \\  \\  \to { \alpha }^{4}  +  { \beta }^{4}  \\  \to( { -2 })^{4}  +  ({ - 1})^{2}  \\  \to 16 + 1 \\  { \pink{ \boxed{ \green{\therefore { \alpha }^{4}   +  { \beta }^{4} =  17}}}}

_________________________________________

Similar questions