If alpha and beta are the zeroes of polynomial f(x) =x^2-p(2+1) -c,then (alpha +1)(Beta +1) = ?
Answers
Answered by
1
Hope this will help you!!!
Attachments:
cutechocolate:
thanx
Answered by
3
In p(x) = x² - p(2+1) - c
Sum of zeroes = α + β ⇒ -b/a
= -(-(p(2+1))/1)
= p(2+1)
Product of zeroes = αβ ⇒ c/a
= -c/1
= -c
Then in (α+1)(β+1) ⇒ αβ + (α + β) +1
Substituting the values,
⇒ -c + (p(2+1)) + 1
⇒ -c + 2p + p + 1
⇒ -c + 3p + 1
⇒ 3p - c + 1
☺ ☺ ☺ Hope this Helps ☺ ☺ ☺
Sum of zeroes = α + β ⇒ -b/a
= -(-(p(2+1))/1)
= p(2+1)
Product of zeroes = αβ ⇒ c/a
= -c/1
= -c
Then in (α+1)(β+1) ⇒ αβ + (α + β) +1
Substituting the values,
⇒ -c + (p(2+1)) + 1
⇒ -c + 2p + p + 1
⇒ -c + 3p + 1
⇒ 3p - c + 1
☺ ☺ ☺ Hope this Helps ☺ ☺ ☺
Similar questions