If alpha and beta are the zeroes of polynomial x2+13x+22 then find the polynomial whose zeroes are alpha /beta +2,beta/alpha-2
Answers
Solution :
The given polynomial is
P(x) = x² + 13x + 22
= x² + 11x + 2x + 22
= x(x + 11) + 2(x + 11)
= (x + 11) (x + 2)
So, the zeroes be x = - 11, - 2
Let, α = - 11 and β = - 2
We have to find the polynomial whose zeroes are (α/β + 2) and (β/α - 2)
Now, α/β + 2 = (- 11)/(- 2) + 2
= 11/2 + 2 = 15/2
and β/α - 2 = (- 2)/(- 11) - 2
= 2/11 - 2 = - 20/11
Thus, the required polynomial is
Q(x) = (x - 15/2) (x + 20/11)
= x² + (20/11 - 15/2)x - 300/22
= x² + {(40 - 165)/22}x - 300/22
= [22x² - 125x - 300]/2
i.e., Q(x) = 22x² - 125x - 300
Answer:
22x - 125x - 300
Step-by-step explanation:
Given polynomial -
x² + 13x + 22 = 0
⇒ x² + 11x + 2x + 22 = 0
⇒ x ( x + 11 ) + 2 ( x + 11 ) = 0
⇒ ( x + 11 ) ( x + 2 ) = 0
∴ x = - 11 or x = - 2
Let α = - 11 and β = - 2
We have to find a polynomial whose zeroes are (α/β + 2 ) and ( β/α - 2 ).
For (α/β + 2 ),
⇒ - 11 / - 2 + 2
⇒ 11 / 2 + 2
⇒ 15 / 2
For ( β/α - 2 ).
⇒ - 2 / - 11 - 2
⇒ 2 / 11 - 2
⇒ - 20 / 11
Therefore, the required polynomial is -
P (x) = ( x - 15 / 2 ) ( x + 20 / 11 )
⇒ x² + (20 / 11 - 15 / 2)x - 15/ 2 * 20 / 11
⇒ x² + {( 40 - 165)/22}x - 300 / 22
⇒ 22x² - 125x - 300 / 22 = 0
⇒ 22x² - 125x - 300 = 0
Hence, the required polynomial is 22x² - 125x - 300.