Math, asked by ashurajput6492, 1 year ago

if alpha and beta are the zeros of quadratic polynomial ax2+BX+C THEN EVALUATE 1UPON ALPHA+1UPON BETA

Answers

Answered by Aurora34
1
given

p(x)= ax²+bx+x

we know that,

sum of zeroes= -b/a (coefficient of x/ coefficient of x²)

 \alpha  +  \beta  =  \frac{ - b}{a}
also,

Product of zeroes= c/a (constant term/ coefficient of x²)

 \alpha  \beta  =  \frac{c}{a}
now,

 \frac{1}{ \alpha }  +  \frac{1}{ \beta }  \\  \\  = \frac{ \beta  +  \alpha }{ \alpha  \beta } \\  \\ on \: substituting \: the \: values \\  \\  =  \frac{ - b}{a}  \div  \frac{c}{a}  \\  \\  =  \frac{ - b}{a}  \times  \frac{a}{c}  \\  \\  =  \frac{ - b}{c}
_____________________________
Similar questions