Math, asked by tharun4173, 2 months ago

if alpha and beta are the zeros of the polynomial x²+4x+2 then find a polynomial whose zeroes are 2 alpha + beta and alpha + 2beta​

Answers

Answered by mathdude500
2

\large\underline\blue{\bold{Given \:  :-  }}

 \rm :  \implies \: \alpha  \: and \:  \beta  \: are \: zeroes \: of \:  {x}^{2}  + 4x + 2

\large\underline\blue{\bold{To \: Find :-  }}

 \rm :  \implies \:a \: polynomial \: having \: zeroes \: 2 \alpha +   \beta  \: and \: 2 \beta   +  \alpha

\large\underline\purple{\bold{Solution :-  }}

Now,

We know that,

\boxed{\purple{\tt Sum\ of\ the\ zeroes=\frac{-b}{a}}}

OR

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

And

\boxed{\purple{\tt Product\ of\ the\ zeroes=\frac{c}{a}}}

OR

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

So,

\rightarrow \rm \:  \alpha + \beta = \frac{-b}{a}

 \bigstar \:  \:  \boxed{ \pink{  \rm :  \implies \: \alpha +   \beta  \:  =   - \: 4}}

and

\rightarrow \rm \:  \alpha \beta = \frac{c}{a}

 \bigstar \:  \:  \boxed{ \pink{  \rm :  \implies \: \alpha  \beta  \:  =  \: 2}}

Now,

To Find a quadratic Polynomial having zeroes

 \rm \: 2 \alpha   + \beta   \:  \: and \:  \: 2\beta  +  \alpha

We know,

If S represents the Sum of zeroes and P represents the Product of zeroes, then required quadratic polynomial is given by

 \bigstar \:  \:  \boxed{ \pink{  \rm :  \implies \:f(x )\:  = k \:( {x}^{2}  - Sx +  P) \:  \: where \: k \:  \ne \: 0}}

So,

\rightarrow \rm \: Sum \: of \: zeroes \:(S)  = 2 \alpha  +  \beta  +  2\beta  +  \alpha

 \rm :  \implies \:S \:  = 3 \alpha  + 3 \beta

 \rm :  \implies \:S \:  =  \: 3( \alpha  +  \beta )

 \rm :  \implies \:S \:  =  \: 3 \times ( - 4)

 \bigstar \:  \:  \boxed{ \pink{  \rm :  \implies \:S \:  =   - \: 12}}

Also,

\rightarrow \rm \: Product \: of \: zeroes \: (P) = (2 \alpha  +  \beta )(2 \beta  +  \alpha )

 \rm :  \implies \:P =  {2 \alpha }^{2}  +  4\alpha  \beta  +  {2 \beta }^{2}  +  \alpha  \beta

 \rm :  \implies \:P \:  = 2( { \alpha }^{2}  + 2 \alpha  \beta  +  { \beta }^{2} ) +  \alpha  \beta

 \rm :  \implies \:P \:  = 2 {( \alpha  +  \beta) }^{2}  + 2

 \rm :  \implies \:P \:  = 2 {( - 4)}^{2}  + 2

 \bigstar \:  \:  \boxed{ \pink{  \rm :  \implies \:P\:  =  \: 34}}

Hence,

The required Quadratic polynomial is given by

\rightarrow \rm \: f(x) \:  =  \: k \: ( {x}^{2}  - Sx + P) \:  \: where \: k \:  \ne \: 0

 \rm :  \implies \:f(x) \:  =  \: k( {x}^{2}  - ( - 12)x + 34) \:  \: where \: k \:  \ne \: 0

 \bigstar \:  \:  \boxed{ \pink{  \rm :  \implies \:f(x) \:  =  \: k( {x}^{2}   + 12x + 34) \:  \: where \: k \:  \ne \: 0}}

Similar questions