CBSE BOARD X, asked by samiksha302005, 1 year ago

if alpha and beta are zeroes of x^2-px+q find ;

alpha^3+beta^3

​1/alpha^3+1/beta^3

alpha^2/beta+beta^2/alpha


knligma: which dayafetr tommrow
knligma: sorry exam
samiksha302005: maths
knligma: day after tommorw is english
samiksha302005: but i am reaching 10th class now .
knligma: ohhh ok
samiksha302005: my unit test are theree

Answers

Answered by sjain180
2

Answer.

Let,

f(x) =  {x}^{2} - px + q

Since, α and β are zeros of f(x)

So,

 \alpha  +  \beta  =   -( \frac{ - p}{1} ) = p

And,

 \alpha  \beta  =  \frac{q}{1}  = q

1.

 { \alpha }^{3}  +  { \beta }^{3}

 =  ({ \alpha  +  \beta })^{3}  - 3 \alpha  \beta ( \alpha  +  \beta )

 =  {p}^{3} - 3pq \:  \: ...(1)

2.

 \frac{1}{ { \alpha }^{3} }  +  \frac{1}{ { \beta }^{3} }

 =  \frac{ { \alpha }^{3} +  { \beta }^{3}  }{ { \alpha  \beta }^{3} }

  \frac{ {p}^{3}  - 3pq}{ {q}^{3} } \:  \:  \:  \:  \:  \:  \:  \:  \:  (from \: (1))

3.

 \frac{ { \alpha }^{2} }{ \beta }  +  \frac{ { \beta }^{2} }{ \alpha }

 =  \frac{ { \alpha }^{3} +  { \beta }^{3}  }{ \alpha  \beta }

 \frac{ {p}^{3} - 3pq }{q}  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  (from \: (1))

Please mark the BRAINLIEST.

GREETINGS!

:-)

Similar questions