Math, asked by arumugamp2014, 1 year ago

If alpha + beta is the roots of 5x2+px-1=0 then alpha -beta=1 find p

Answers

Answered by vidyaadityasang123
4

Hope this answer helped you .

Attachments:
Answered by mysticd
2

 Given \: \alpha \:and \:beta \: are \: roots \\of \: 5x^{2} + px - 1 = 0

i) Sum \: of \:the \: zeroes = \frac{- coefficient \:of \:x }{ coefficient \:of \:x^{2}}

 \implies \alpha + \beta = \frac{-p}{5} \: --(1)

ii Product \: of \:the \: zeroes = \frac{ constant }{ coefficient \:of \:x^{2}}

 \implies \alpha  \beta = \frac{-1}{5} \: --(2)

 \alpha - \beta = 1 \: (given)

/* On squaring both sides , we get */

 \implies (\alpha - \beta )^{2}= 1^{2}

 \implies (\alpha + \beta )^{2} - 4 \alpha \beta= 1

 \implies \Big( \frac{-p}{5}\Big)^{2} - 4 \times \Big( \frac{-1}{5}\Big) = 1

 \implies \frac{p^{2}}{25} + \frac{4}{5} = 1

 \implies \frac{p^{2}}{25} = 1-  \frac{4}{5}

 \implies \frac{p^{2}}{25} = \frac{5-4}{5}

 \implies \frac{p^{2}}{25} = \frac{1}{5}

 \implies p^{2} = \frac{25}{5}

 \implies p^{2} = 5

 \implies p = \pm \sqrt{5}

Therefore.,

 \red { Value \: of \:p } \green {= \pm \sqrt{5} }

•••♪

Similar questions