Math, asked by irisrosewood84262, 1 year ago

if alphe and beta are the zeros of the polynomial x square + 8x + 6, from the polynomial whose zeros are { question number (1) 1 by alpha square and 1 by beta square (2) 1 + beta by alphe and 1 + alphe by beta }

Answers

Answered by Ajain9926
0
It was really a mind breaker but I did it☺️

I hope it helps☺️
Attachments:

amitnrw: α² + β² = (α + β)²- 2αβ not (α + β)²- αβ
Answered by amitnrw
1

Answer:

Step-by-step explanation:

x² + 8x + 6 = 0

α & β are roots

α + β = -8

αβ = 6

Equation whose roots area

1/α²  & 1/β²

(x - 1/α²)(x-1/β²)  = 0

= x² - x(1/α² + 1/β²) + 1/α²β² = 0

1/α² + 1/β² = (α² + β²)/(α²β²)

=>1/α² + 1/β² = ( (α + β)²- 2αβ)/((αβ)²)

Putting values of α + β = -8 & αβ = 6

=>1/α² + 1/β² = ( (-8)²- (2×6))/(6²)

=>1/α² + 1/β² = (64- 12)/(36)

=>1/α² + 1/β² = (52)/(36)

=>1/α² + 1/β² = (13)/(9)

x² - x(1/α² + 1/β²) + 1/α²β² = 0

=> x² - x(13/9) + 1/36 = 0

=> 36x² - 52x + 1 = 0

=> (6x)² - 52x + 1 = 0

Q2)

(x - (1+β)/α)(x- (1+α)/β)

= x² -x ((1+β)/α + (1+α)/β) )+ (1+β)(1+α)/αβ  = 0

=> x² -x(β + β² + α + α²)  + (1 + α² + β² + αβ) = 0

=> x² -x(α² + β² + α + β)  + (1 + α² + β² + αβ) = 0

α + β = -8 , αβ = 6

α² + β² = (α + β)² - 2αβ

=> α² + β² = (-8)² - 2×6 = 52

Putting these values in

x² -x((α² + β² )+ (α + β))  + (1 + α² + β² + αβ) = 0

=> x² - x(52 -8) + (1 + 52 + 6) = 0

=> x² -44x + 59 = 0

Similar questions