Physics, asked by safyannawaz662, 8 months ago

If amplitude is 200, intensity is 300. When amplitude is increased to 800 then
what will be intensity?
(A)1200
(B)1400
(C)1600
(D) 1800​

Answers

Answered by Anonymous
30

Given:

Initial amplitude  \rm (A_i) = 200

Initial intensity  \rm (I_i) = 300

Final amplitude  \rm (A_f) = 800

To Find:

Final intensity  \rm (I_f)

Answer:

Intensity of wave is directly proportional to amplitude square i.e.

 \boxed{ \bf{I \propto A^2}}

So,

 \rm \implies \dfrac{I_i}{I_f} = \dfrac{{A_i}^{2}}{{A_f}^{2}} \\  \\  \rm \implies \dfrac{300}{I_f} = \dfrac{{200}^{2}}{{800}^{2}} \\  \\ \rm \implies \dfrac{300}{I_f} = {(\dfrac{200}{800}) }^{2}  \\  \\ \rm \implies \dfrac{300}{I_f} = {(\dfrac{1}{4}) }^{2}   \\  \\ \rm \implies \dfrac{300}{I_f} =\dfrac{1}{16} \\  \\ \rm \implies I_f = 4800

 \therefore  \boxed{\mathfrak{Final \ intensity \ (I_f) = 4800}}

Answered by BrainlyRonaldo
40

\bigstar Given

If amplitude is 200, intensity is 300. When amplitude is increased to 800

\bigstar To Find

Find new intensity

\bigstar Solution

We know that

The intensity of a wave is directly proportional to the square of its amplitude

Mathematically

\red{\rm \longrightarrow I \propto a^{2}}

Here

  • I = intensity
  • a = amplitude

According to the question

We are asked to find the new intensity

Given that

If amplitude is 200, intensity is 300. When amplitude is increased to 800

Hence

  • I = 300
  • a = 200
  • a' = 800

Increase in amplitude (A)

\blue{\rm \longrightarrow A=\dfrac{a^{'}}{a}}

Hence

\green{\rm \longrightarrow A= \dfrac{800}{200}}

On further simplification

We get

\orange{\rm \longrightarrow A= 4}

Increase in amplitude (squared)

Therefore

\pink{\rm \longrightarrow A^{2}= 4^{2}}

Hence

\red{\rm \longrightarrow A^{2}= 16}

Therefore

Amplitude squared increases by a factor of 16

Hence

\orange{\rm \longrightarrow I^{'}=I \times A^{2}}

Here

  • I' = new intensity
  • I = initial intensity
  • A² = squared amplitude factor

Given that

If amplitude is 200, intensity is 300. When amplitude is increased to 800

Hence

  • I = 300

We found out that

  • A² = 16

Substituting the values

We get

\blue{\rm \longrightarrow I^{'}=300 \times 16}

On further simplification

We get

\green{\rm \longrightarrow I^{'}=4800}

Hence

\checkmark New intensity = 4800

[This is the correct answer]

[No options match]

Therefore

When amplitude is increased to 800 then intensity will be 4800

Similar questions