if an angle between two vectors of equal magnitude P is theta ,the magnitude of the difference of the vectors is
Answers
Answered by
1
Now we have a simple triangle to solve. Use cosine law to determine the magnitude of the resultant:
R2=A2+A2−2(A)(A)cos(180−θ)R2=A2+A2−2(A)(A)cos(180−θ)
but cos(180−θ)=−cosθcos(180−θ)=−cosθ
∴∴ R2=A2+A2−2(A)(A)(−cosθ)R2=A2+A2−2(A)(A)(−cosθ)
or
R2=A2+A2+2(A)(A)cosθR2=A2+A2+2(A)(A)cosθ
R2=2A2+2(A2)cosθR2=2A2+2(A2)cosθ
R2=2A2(1+cosθ)R2=2A2(1+cosθ)
R=A2(1+cosθ)−−−−−−−−−√
R2=A2+A2−2(A)(A)cos(180−θ)R2=A2+A2−2(A)(A)cos(180−θ)
but cos(180−θ)=−cosθcos(180−θ)=−cosθ
∴∴ R2=A2+A2−2(A)(A)(−cosθ)R2=A2+A2−2(A)(A)(−cosθ)
or
R2=A2+A2+2(A)(A)cosθR2=A2+A2+2(A)(A)cosθ
R2=2A2+2(A2)cosθR2=2A2+2(A2)cosθ
R2=2A2(1+cosθ)R2=2A2(1+cosθ)
R=A2(1+cosθ)−−−−−−−−−√
Similar questions