If angleB and angleQ are acute angles such that sinB = sinQ, then prove that angleB = angleQ.
Class 10
Trigonometric ratios
#No Spams
Answers
Answered by
35
Heya!!
Here is your solution :
Given,
In a right angled triangle <Q and <B are acute angles, so
⇒( <B + <Q + 90°) = 180°
⇒( <B + <Q) = 180° - 90°
⇒( <B + <Q) = 90°
.°. <B = ( 90° - <Q ) - - - - - - - ( 1 )
According to question,
⇒sin B = sin Q
Substitute the value of ( 1 ),
⇒sin ( 90° - Q ) = sin Q
So,
⇒( 90° - Q ) = Q
⇒90° = Q + Q
⇒90° = 2Q
⇒Q = 90° ÷ 2
.°. Q = 45° -------- ( 2 )
Substitute the value of ( 2 ) in ( 1 ),
⇒<B = 90° - Q
⇒ <B = 90° - 45°
.°. <B = 45° --------- ( 3 )
From ( 2 ) and ( 3 ) , we get,
⇒<B = <Q
Proved!!
Note : The sign '<' is used to show the sign of angle.
Here is your solution :
Given,
In a right angled triangle <Q and <B are acute angles, so
⇒( <B + <Q + 90°) = 180°
⇒( <B + <Q) = 180° - 90°
⇒( <B + <Q) = 90°
.°. <B = ( 90° - <Q ) - - - - - - - ( 1 )
According to question,
⇒sin B = sin Q
Substitute the value of ( 1 ),
⇒sin ( 90° - Q ) = sin Q
So,
⇒( 90° - Q ) = Q
⇒90° = Q + Q
⇒90° = 2Q
⇒Q = 90° ÷ 2
.°. Q = 45° -------- ( 2 )
Substitute the value of ( 2 ) in ( 1 ),
⇒<B = 90° - Q
⇒ <B = 90° - 45°
.°. <B = 45° --------- ( 3 )
From ( 2 ) and ( 3 ) , we get,
⇒<B = <Q
Proved!!
Note : The sign '<' is used to show the sign of angle.
DevilDoll12:
great
Answered by
45
⬇✔⬇✔⬇⬇⬇⬇⬇✔⬇✔⬇✔✔⬇✔⬇✔⬇
we have to prove that
here we can write
here we can write
<b=90°-<q..........(1)
A/Q
sin(90° -q)= sinq
here
90°-q =q
90°=q+q
2q= 90°
q= 45°
we can write value of q in equation 1 ..
my
then
angle b= 90°-45°
<b= 45°
Similar questions