Math, asked by tarasturia, 1 year ago

if α,β are the zeroes of x^2 -6x+k what is the value of k.if 3α +2β =20?

Answers

Answered by kishanswaroopya
3
 GIVEN<br />P(x) = x^2 - 6x + k ..... (1) \\<br /><br />3α +2β =20 .............. (2)\\<br /><br />MAKE polynomial zero (1)\\<br />x^2 - 6X + k = 0 \\ as \: per \: polynomials \: \\ a = 1 \\ b = - 6 \\ c = k \\ \alpha + \beta = - \frac{b}{a} \\ \alpha + \beta = {6} .....(3) \\ product \: \alpha \beta = \frac{c}{a} \\ \alpha \beta = k \\ by \: (2)and(3) \\ equate by \: multiply \: (3) \: by \: 3 \\ 3 \alpha + 3 \beta = 18 .....(4)\\ sub \: (4)from \: (2) \\ (3 \alpha - 3 \alpha ) + (2 \beta - 3 \beta ) = 20 - 18 \\ - \beta = 2 \\ \beta = - 2 \\ substitute \: \beta \: value \: in \: (4) \\ 3 \alpha + 3( -2 ) = 18 \\ 3 \alpha - 6 = 18 \\ 3 \alpha = 18 + 6 \\ 3 \alpha = 24 \\ \alpha = 8 \\ now \: place \: the \: value \: of \: \alpha \: and \: \beta \: in \: \alpha \beta = k \\ therefore \: 8 \times - 2 = k \\ k = - 16
Answered by Anonymous
0

  \huge  \underbrace{\boxed{ \bf\dag  \green{ Given} \dag }}

 \tt \alpha , \beta  \: are \: zeroes \: of \:  {x}^{2}  - 6x + k

 \tt3  \alpha  + 2 \beta  = 20

  \huge  \underbrace{\boxed{ \bf\dag  \red{ FIND} \dag }}

 \tt y = ?

  \huge  \underbrace{\boxed{ \bf\dag  \pink{ Solution} \dag }}

 \tt  {x}^{2}  - 6x + y \\  \tt  \alpha  +  \beta  =  \frac{ - b}{a}  =  \frac{ \cancel - ( \cancel - 6)}{1}  = 6.....(i) \\  \tt  \alpha  \beta  =  \frac{c}{a}  =  \frac{a}{1}  = k .....(ii) \\  \tt multipy \: eq(i) \: by3 \\  \tt 3( \alpha  +  \beta ) = 3(6) \\  \tt 3 \alpha  + 3 \beta  = 18.....(iii) \\  \tt given \: eq. \: is, \: 3 \alpha  + 2 \beta  = 20.....(iv) \\  \tt subtracting \: eq(iv)from(iii), \\  \tt 3 \alpha  + 3 \beta  = 18 \\  \tt    \underline{   - 3 \alpha   +   2 \beta  =    20} \\  \tt   \underline{ \:  \:  \:  \:  \beta  \:  \:   =  \:  \:  \:  \:  \:  \:  \:    - 2} \\  \tt from \: eq(i), - 2 +  \beta  = 6 \\ \tt  \implies \beta = 6 + 2 = 8  \\ \tt now, \: from \: eq(ii), \\  \tt  \alpha  \beta  = k \\  \tt \therefore k =  ( - 2)(8) =  - 16

 \underbrace{\boxed{ \bf  \purple{ Answer}}}

 \boxed{ \tt value \: of \: k \: is - 16.}

Similar questions