Math, asked by mohamedarhamdxb, 11 months ago

If ,α,β,γ are the zeros of p(x)=5x^3+2x^2-3x+1 then find the value of 1/α+1/β+1/γ

Answers

Answered by krishnajana295
9

Step-by-step explanation:

follow this example

I hope this may help you

Attachments:
Answered by ishwarsinghdhaliwal
0

Comparing the polynomial with ax³+bx²+cx+d= 0

we get

a=5, b=2, c=-3 and d=1

\alpha  +  \beta  +  \gamma  =   \frac{ - b}{a}  =  \frac{ - 2}{5}  \\  \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  =  \frac{c}{a}  =  \frac{ - 3}{5}  \\  \alpha  \beta  \gamma  =  \frac{ - d}{a}  =  \frac{ - 1}{5}  \\   now \\  \frac{1}{ \alpha  }  +  \frac{1 }{ \beta }  +  \frac{1}{ \gamma }  \\ =   \frac{ \beta  \gamma  +  \alpha  \gamma  +  \alpha  \beta }{ \alpha  \beta  \gamma }  \\  =  \frac{ \frac{ - 3}{5} }{ \frac{ - 1}{5} }  \\  =  \frac{ - 3}{5}  \times  \frac{5}{ - 1}  \\ =  3

Similar questions