Math, asked by mjameen4882, 7 months ago

If ay=sin(x+y) prove that d2y/dx2 + y(1+dy/dx)3

Answers

Answered by adityavishwkrma6386
0

Answer:

good morning happy navratri

Answered by aryan073
0

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Q1) If ay=sin(x+y) prove that d²y/dx²+y(1+dy/dx)³

 \:  \:  \underline {\boxed{ \bf{ \ddot \smile  \: answers}}}

   \divideontimes \boxed{ \sf{to \: prove \to \:  \frac{ {d}^{2}y }{d {x}^{2} }  + y {(1 +  \frac{dy}{dx} )}^{3} }}

 \:  \implies \displaystyle \tt{differentiating \: both \: side \: with \: respect \: to \: x}

 \implies \displaystyle \tt{ ay  = sin(x + y)}

 \:  \implies \displaystyle \tt{a \frac{dy}{dx}  = cosx(x + y) \times 1.......by \: using \: chain \: rule}

 \:  \implies \displaystyle \tt{a \frac{dy}{dx}  = cos(x + y)}

 \:  \implies \displaystyle \tt{ \frac{dy}{dx}  =  \frac{cos(x + y)}{a} }

 \bullet  \underline{\displaystyle \bf{ \:double \: differentiating \: the \: equation \: with \: respect \: to \: x}}

 \:  \:  \bullet \boxed{ \bf{by \: using \: quotient \: rule}}

 \implies \displaystyle \tt{ \frac{ {d}^{2}y }{ {d} {x}^{2}  }  =  \frac{a \frac{dy}{dx}cos(x + y) +  \frac{dy}{dx}  a \times cos(x + y)}{ {a}^{2} } }

 \implies \displaystyle \tt{ \frac{ {d}^{2}y }{d {x}^{2} }  =  \frac{a( - sin(x + y) \times 1) + 0 \times cos(x + y)}{ {a}^{2} } }

 \:  \implies \displaystyle \tt{  \frac{ {d}^{2}y }{ {dx}^{2} }  =  \frac{ - asin(x + y) + 0}{ {a}^{2} } }

 \:  \implies \displaystyle \tt{ \frac{ {d}^{2}y }{ {dx}^{2} }  =  \frac{ - asin(x + y)}{ {a}^{2} } }

 \:  \bullet  \displaystyle\bf{substiute \: the \: value \: in \: equation}

 \:  \:  \implies \displaystyle \tt{ \frac{ {d}^{2} y}{ {dx}^{2} }  + y\bigg(({1 +  \frac{dy}{dx} )}^{3}  \bigg)}

 \implies \displaystyle \tt{ \frac{ - asin(x + y)}{  {a}^{2}  }  + y {(1 +  \frac{cos(x + y)}{a} }^{3} )}

 \:  \implies \displaystyle \tt{ \frac{ - sin(x + y)}{a}  + y  \bigg({(1 +  \frac{cos(x + y)}{a} }^{3} \bigg) }

Similar questions