Math, asked by lokeshGoppidi, 2 months ago

If α,βα,β be the roots of ax2+bx+c=0,c≠0ax2+bx+c=0,c≠0 α+β=−baα+β=−ba and αβ=caαβ=ca, then

Q: a(α^3+β^3)+b(α^2+β^2)+c(α+β)​

Answers

Answered by dmongp0712
1

Step-by-step explanation:

α+β,α

2

2

3

3

are in G.P.

∴(α

2

2

)

2

=(α+β)(α

3

3

)

∴α

4

4

+2α

2

β

2

4

4

3

β+αβ

3

∴α

2

β

2

−α

3

β−αβ

3

2

β

2

=0

∴α

2

β(β−α)−αβ

2

(β−α)=0

∴(α

2

β−αβ

2

)(β−α)=0

∴αβ(α−β)(β−α)=0

∴αβ(α−β)

2

=0

∴α=0 or β=0 or α−β=0

Case (1) α=0 or β=0,

⟹x=0 is a solution of given equation

∴a(0)

2

+b(0)+c=0

∴c=0

Case (2) α−β=0

⟹α=β

So, the equation has equal roots.

∴Δ=b

2

−4ac=0

∴c=0 or Δ=0

∴cΔ=0

Similar questions