Physics, asked by cheemaprabhleen6, 7 months ago

If both horizontal range and hmax are equal than find the horizontal range?

Answers

Answered by RISH4BH
85

ɢɪɴ :-

  • The horizontal range is equal to the maximum height of a projectile motion .

ғɪɴ :-

  • The horizontal range of the projectile.

ɴsʀ :-

\underline{\textsf{\textbf{\purple{\pink{$\leadsto$}\:\: Diagram\:of\: projectile\:motion:-}}}}

\setlength{\unitlength}{1 cm}\begin{picture}(12,8)\put(0.2,0){\vector(0,1){5}}\put(3,0){\vector(1,0){3}}\put(3,0){\line(-1,0){2.8}}\put(0,-0.3){$\sf O $}\qbezier(0.2,0)(2.5,4)(5.5,0)\put(5.5,-0.3){$\sf A $}\put(2.75,0){\line(0,1){2}}\put(2.75 , 2){\vector(  1 ,0 ){1}}\put(0.7,0.6){\circle{0.4}}\put(2.74,2){\circle{0.4}}\put(5.1,0.6){\circle{0.4}}\put(2.75,-0.3){$\sf M $}\put( 0.45,0.6){\vector(1,2){0.36}}\put( 5.3, 0.67){\vector(1, - 1){0.36}}\put( 2.2,  - 0.45){\vector( - 1, 0){1.8}}\put( 3.3,  - 0.45){\vector( 1, 0){2.2}}\put(2.3, - 0.5){$\tt Range$}\put(2,2.5){$\tt Max^{m} height $}\end{picture}

Let us consider a ball projected at an angle θ , with the horizontal . Let us take the Range be R and Maximum height be h .

\sf{\green{\hookrightarrow Firstly\:,\:in\:a\: projectile\:motion:-}}

\underline{\textsf{\textbf{\purple{\pink{$\leadsto$}\:\: Maximum\:height\:is\:given\;by,}}}}

\boxed{\red{\bf \blue{\bigstar}\: H_{max}=\dfrac{u^2\sin^2\theta}{2g}}}

\rule{200}3

\underline{\textsf{\textbf{\purple{\pink{$\leadsto$}\:\: Range\:is\:given\;by,}}}}

\boxed{\red{\bf \blue{\bigstar}\: Range=\dfrac{2u^2\sin2\theta}{g}}}

\rule{200}3

\underline{\pink{ \sf \longrightarrow Since\: they\:are\:equal :-}}

\tt:\implies H_{max}=Range

\tt:\implies \dfrac{u^2 sin^2\theta}{2g}=\dfrac{2u^2\sin 2\theta}{g}

\tt:\implies \dfrac{\cancel{u^2}\cancel{\sin^2\theta}}{2 \cancel g}=\dfrac{2\cancel{u^2}\cancel{\sin\theta}\cos\theta}{g}

\tt:\implies \dfrac{sin\theta}{2}=2\cos\theta

\tt:\implies \dfrac{sin\theta}{cos\theta}=2\times2

{\boxed{\bf \red{\hookrightarrow} tan\theta = 4}}

\rule{200}3

Now if we consider a right angled triangle ∆ABC in which tanθ = 4 . So using this we can find other trignometric values , here of cosθ and sinθ . And we know tanθ = \sf \dfrac{perpendicular}{base} Now we need to find hypontenuse .

\tt:\implies hypontenuse^2=base^2+perpendicular^2

\tt:\implies h^2 = 4^2+1^2

\tt:\implies h^2 = 16 + 1

{\boxed{\bf \red{\hookrightarrow} hypontenuse= \sqrt{17}}}

\sf \orange{ So \: here , }

  • \sf\blue{ sin\theta=\dfrac{perp.}{hypo.}=\dfrac{4}{\sqrt{17}}}
  • \sf\blue{ cos\theta=\dfrac{base}{hypo.}=\dfrac{1}{\sqrt{17}}}

Now , we will put these values in the formula of horizontal range , to get it .

\rule{200}3

\underline{\textsf{\textbf{\purple{\pink{$\leadsto$}\:\: Finding\:the\: horizontal\: range:-}}}}

\tt:\implies Horizontal\:range = \dfrac{2u^2\sin\theta\cos\theta}{g}

\tt:\implies R = \dfrac{2\times u^2 \times\dfrac{4}{\sqrt{17}}\times\dfrac{1}{\sqrt{17}}}{10}

\tt:\implies R = \dfrac{\cancel 2u^2\times 4}{17\times \cancel{10}}

\tt:\implies R = \dfrac{4u^2}{17\times 5}

\underline{\boxed{\red{\tt\longmapsto  Range \:\:=\:\:\dfrac{4u^2}{85}}}}

\boxed{\green{\bf\pink{\dag}\:Hence\:the\: horizontal\:range\:is\:\dfrac{4u^2}{85}}}


Anonymous: Nice :)
Similar questions