If cos⁻¹(2/3x) + cos⁻¹(3/4x) = π/2 , x > 3/4
then x is equal to: (A) √(145)/12
(B) √(145)/10
(C) √(146)/12
(D) √(145)/11
[JEE Main 2019]
Answers
Answered by
2
Answer:
Please see the attachment
Attachments:
Answered by
7
answer : option (A) √145/12
given, cos-¹(2/3x) + cos-¹(3/4x) = π/2 , x > 3/4
taking cosine both sides,
cos[cos-¹(2/3x) + cos-¹(3/4x)] = cos(π/2)
⇒cos[cos-¹(2/3x) + cos-¹(3/4x)] = 0
⇒cos(cos-¹(2/3x)).cos(cos-¹(3/4x)) - sin(cos-¹(2/3x)).sin(cos-¹(3/4x)) = 0
⇒2/3x × 3/4x - sin(sin-¹{√(9x² - 4)/3x}).sin{√(16x² -9)/4x} = 0
⇒6/12x² - √(9x² - 4)/3x × √(16x² - 9)/4x = 0
⇒1/2x² = √(9x² - 4)(16x² - 9)/12x²
⇒6 = √(9x² - 4)(16x² - 9)
⇒36 = 144x⁴ - 81x² - 64x² + 36
⇒144x² = 145
⇒x = ±√145/12
but x > 3/4 so, x = √145/12
hence option (A) is correct choice.
Similar questions