Math, asked by nameera8089, 11 months ago

For x ∈ R - [0, 1] , let f₁(x) = 1/x , f₂(x) = (1 - x) and f₃(x) = 1/(1 - x) be three given functions. If a function, J (x) satisfies (f₂oJof₁)(x) = f₃(x) then J (x) is equal to: (A)f₃(x) (B) (1/x)f₃(x)
(C) f₂(x) (D) f₁(x)
[JEE Main 2019]

Answers

Answered by KajalBarad
0

J(x) is equal to f3(x)

  • f₁(x) = 1/x , f₂(x) = (1 - x) and f₃(x) = 1/(1 - x) , be three given functions.
  • Also, J(x) satisfies  (f₂oJof₁)(x) = f₃(x)

i.e.,

  • f2( J ( f1 (x) ) ) = f3 (x) = 1/(1 - x)
  • f2( J ( 1/x) ) = 1/( 1 - x )
  • f2(x ) = 1 - x
  • 1/(1 -x) = 1 + x/(1 - x ) =1 +  \frac{1}{\frac{1}{x} -  1 } = 1 -  \frac{1}{1 - \frac{1}{x} }  ==>

  • 1 -  \frac{1}{1 - \frac{1}{x} } = f2( \frac{1}{1 - \frac{1}{x} }) = >
  • J(1/x) = 1/(1 - 1/x) ==>
  • J(x) = 1/(1 - x) ==>
  • J(x) = f3(x)

Hence proved that J(x) is equal to f3(x)

Similar questions