If cos⁻¹ p + cos⁻¹ q + cos⁻¹ r = π, then prove that p² + q² + r² + 2pqr = 1.
Answers
Answered by
4
Best Answer
I will write cos- x instead of cos¯¹x ok?
cos- x = a
cos- y = b
cos- z = c
a + b + c = π
a + b = π - c
cos (a + b) = cos (π - c)
cos a . cos b - sin a . sin b = - cos c
sin² a + cos² a = 1 → sin a = √(1 - cos² a)
cos a . cos b - √((1 - cos² a).(1 - cos² b)) = - cos c
cos a . cos b + cos c = √((1 - cos² a).(1 - cos² b))
xy + z = √((1 - x²).(1 - y²))
(xy + z)² = (1 - x²).(1 - y²)
x²y² + 2xyz + z² = 1 - y² - x² + x²y²
x² + y² + z² + 2xyz = 1
Similar questions