Math, asked by kherachohan5883, 1 year ago

If cos(α + β) = 3/5, sin(α - β)
= 5/13
and 0 < α,
β < π/4, then tan(2α) is equal to:
(A) 63/52
(B) 33/52
(C) 63/16
(D) 21/16

Answers

Answered by MaheswariS
7

\textbf{Given:}

cos(\alpha+\beta)=\frac{3}{5}

sin(\alpha-\beta)=\frac{5}{13}

cos(\alpha+\beta)=\frac{3}{5}

\text{Taking reciprocals}

sec(\alpha+\beta)=\frac{5}{3}

tan^2(\alpha+\beta)=sec^2(\alpha+\beta)-1

tan^2(\alpha+\beta)=\frac{25}{9}-1

tan^2(\alpha+\beta)=\frac{16}{9}

\implies\bf\,tan(\alpha+\beta)=\frac{4}{3}

sin(\alpha-\beta)=\frac{5}{13}

cosec(\alpha-\beta)=\frac{13}{5}

cot^2(\alpha-\beta)=cosec^2(\alpha-\beta)-1

cot^2(\alpha-\beta)=\frac{169}{25}-1

cot^2(\alpha-\beta)=\frac{144}{25}

cot(\alpha-\beta)=\frac{12}{5}

tan(\alpha-\beta)=\frac{5}{12}

\text{Consider,}

tan2\alpha

=tan[(\alpha+\beta)+(\alpha-\beta)]

=\displaystyle\frac{tan(\alpha+\beta)+tan(\alpha-\beta)}{1-tan(\alpha+\beta)\,tan(\alpha-\beta)}

=\displaystyle\frac{\frac{4}{3}+\frac{5}{12}}{1-(\frac{4}{3})(\frac{5}{12})}

=\displaystyle\frac{\frac{12+5}{12}}{1-(\frac{1}{3})(\frac{5}{3})}

=\displaystyle\frac{\frac{21}{12}}{1-\frac{5}{9}}

=\displaystyle\frac{\frac{21}{12}}{\frac{4}{9}}

=\displaystyle\frac{21}{12}{\times}\frac{9}{4}

=\displaystyle\frac{21}{4}{\times}\frac{3}{4}

=\displaystyle\frac{63}{16}

\therefore\boxed{\bf\tan\,2\alpha=\frac{63}{16}}

\implies\text{Option (C) is correct}

Similar questions