If cos A = 0.5 and cos B = 1\√2: find the value of : tan A - tan B \ 1 + tan A tan B
Answers
Answered by
50
CosA = 0.5
⇒A = 60°
cosB = 1/√2
⇒B = 45°
A/q
(tanA - tanB)/(1 +tanAtanB)
=(√3 -1)/(1+√3)
now rationalizing it,
(√3 -1)×(√3 -1)/(1+√3)×(√3 -1)
=(√3 -1)²/(3 -1)
=(3+1- 2√3)/2 = 2- √3
⇒A = 60°
cosB = 1/√2
⇒B = 45°
A/q
(tanA - tanB)/(1 +tanAtanB)
=(√3 -1)/(1+√3)
now rationalizing it,
(√3 -1)×(√3 -1)/(1+√3)×(√3 -1)
=(√3 -1)²/(3 -1)
=(3+1- 2√3)/2 = 2- √3
qais:
plz mark brainliest
Answered by
9
Answer:
cosA=0.5,
A=60°
cosB=1\√2,
B=45°
value of tanA-tanB/1+tanA*tanB
√3-1/1+√3*√3-1√3-1=
(√3-1)square/(√3)square-(1)square=
(3+1-2√3)/2=
2-√3
Similar questions
Science,
9 months ago
Science,
9 months ago
English,
1 year ago
Social Sciences,
1 year ago
English,
1 year ago