If Cos2a-sin2a=tan2b,prove that √2cosa.cosb=1
kaustavgogoi:
Is that Cos²a-sin²a or cos2a-sin2a
Answers
Answered by
3
Solution :
It is given that ,
Cos²A - sin²A = tan²B
=>cos²A-(1-cos²A)= tan²B
[ Since , sin²A = 1 - cos²A ]
=>cos²A-1+cos²A= tan²B
=> 2cos²A-1 = tan²B
=> 2cos²A = tan²B + 1
=> 2cos²A = sec²B
[ Since , tan²B + 1 = sec² B ]
=> 2cos²A = 1/cos²B
=> 2cos²Acos²B = 1
Therefore ,
√(2cos²Acos²B) = √1
=> √2 cosAcosB = 1
••••
Answered by
1
Hope this will help you
Attachments:
Similar questions