Math, asked by kalpanasingh1807, 3 months ago

if cos4a=sin2a then the value of tan 4a is​

Answers

Answered by udayadithyan
0

Step-by-step explanation:

tan

pls mark me as brainlest

Answered by mathdude500
0

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{cos4a \:  =  \: sin2a} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{tan \: 4a}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

\tt \:  \longrightarrow \: cos \: 4a = sin \: 2a

\tt \:  \longrightarrow \: cos \: 4a \:  =  \: cos \: (90 \:  -  \: 2a)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \red { \bf \:  \{\because \: cos \: (90 \:  -  \: x) \:  =  \: sinx \}}

\tt\implies \:4a \:  =  \: 90 \:  -  \: 2a

\tt \:  \longrightarrow \: 4a \:  +  \: 2a \:  =  \: 90

\tt \:  \longrightarrow \: 6a \:  =  \: 90

\tt \:  \longrightarrow \: a \:  =  \: \dfrac{ \cancel{90}  \:  \:   ^{15} }{ \cancel6}

\tt\implies \: \boxed{ \pink{\tt \:  a \:  =  \: 15}}

\begin{gathered}\bf\red{Now,}\end{gathered}

\tt \:  \longrightarrow \:  \therefore \: tan \: 4a

\tt \:  \longrightarrow \: tan (\: 4 \times 15)

\tt \:  \longrightarrow \: tan \: 60

\tt \:  \longrightarrow \:  \sqrt{3}

\tt\implies \: \boxed {\purple{\bf \:  tan \: 4a \:  =  \:  \sqrt{3} }}

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information:-

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

◇ Reciprocal Identities

The Reciprocal Identities are given as:

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

◇ Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\bf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions