Math, asked by skyadav611977panxrb, 1 year ago

if cosA =3/5, find 9cot2A-1

Answers

Answered by Panzer786
8
Heya !!!


CosA = 3/5 = B/H




B = 3 and H = 5


By Pythagoras theroem ,



(H)² = (B)²+(P)²

(P)² = (H)²-(B)²

(P)² = (5)²-(3)² = 25-9


P = ✓16 = 4


Therefore,


CotA = B/P = 3/4




9 Cot²A - 1 = 9 × (3/4)² -1



=> 9 × 9/16 - 1



=> 81/16 - 1

=> 81-16/16


=> 65/16



★ HOPE IT WILL HELP YOU ★
Answered by vidya854
3
Hiii. ....friend

Here is ur answer,

CosA => 3/5.

CosA= adj side/Hypotenuse.

Adj side => 3.

Hypotenuse => 5.

Opp side = ?

 =  >  \:  {hypo}^{2}  =  {base}^{2}  +  {height}^{2}

 =  >  \: h \:   = \sqrt{ {5}^{2} -  {3}^{2}  }

 =  >  \:  \sqrt{25 - 9}  =  \sqrt{16}

 =  >  \: 4

CotA=> Adj side/ Opp side.

=> 3/ 4.


=> 9Cot2A-1

 =  >  \:  \frac{9 {cot}^{2}a - 1 }{2 \cot(a) }  - 1

 =  >  \:  \frac{9 { (\frac{3}{4} })^{2}  - 1}{2( \frac{3}{4} )}  - 1

 =  >  \:  \frac{ \frac{81}{16}  - 1}{ \frac{3}{2} }  - 1

 =  >  \:  \frac{65}{16}  \times  \frac{2}{3}  - 1

 =  >  \:  \frac{65}{24}  - 1

 =  >  \:  \frac{41}{24}



:-)Hope it helps u.
Similar questions