If cosA+cosB+cosC = 0,
Prove:
cos3A+cos3B+cos3C = 12cosAcosBcosC
Answers
Answered by
6
Answer:
For a Proof, please refer to the Explanation.
Explanation:
We know from Algebra, that,
x+y+z=0⇒x3+y3+z3=3xyz.
∴cosA+cosB+cosC=0⇒cos3A+cos3B+cos3C=3cosAcosBcosC..................................................(⋆).
Now, cos3A+cos3B+cos3C,
=4cos3A−3cosA+4cos3B−3cosB+4cos3C−3cosC,
=4(cos3A+cos3B+cos3C)−3(cosA+cosB+cosC),
=4(3cosAcosBcos
For a Proof, please refer to the Explanation.
Explanation:
We know from Algebra, that,
x+y+z=0⇒x3+y3+z3=3xyz.
∴cosA+cosB+cosC=0⇒cos3A+cos3B+cos3C=3cosAcosBcosC..................................................(⋆).
Now, cos3A+cos3B+cos3C,
=4cos3A−3cosA+4cos3B−3cosB+4cos3C−3cosC,
=4(cos3A+cos3B+cos3C)−3(cosA+cosB+cosC),
=4(3cosAcosBcos
Muss0o:
Thank you very much
Answered by
9
Answer:
12cosA cosB cosC
Step-by-step explanation:
We know that ,
a + b + c = 0
a³ + b³ + c³ = 3abc
•°• cosA + cosB + cosC = 0 ..........(1)
=> cos³A + cos³B + cos³C = 3cosA . cosB . cosC..........(2)
•°• LHS = cos3A + cos3B + cos3C
= ( 4 cos³A - 3cosA ) + ( 4cos³B - 3cosB ) + (4cos³C - 3cosC)
= 4( cos³A + cos³B + cos³C ) - 3( cosA + cosB + cosC )
= 4 × 3 cosA . cosB . cosC . - 3 × 0 ( From the first and second equation )
= 12 cosA . cosB . cosC
Similar questions