if cosA+sinA/cosA-sinA= 1+root of 3/1-root of 3, tell the value of A
Answers
Answered by
29
by one of the law of properties
a/b= c/d then a+b/a-b=c+d/c-d
so, (cosA+sinA+cosA-sinA)/(cosA+sinA-cosA+sinA)=(1+root3+1-root3)/(1+root3-1+root3)
or 2cosA/2sinA=2/2root3
or cot A=cot 60
or A=60 degree
a/b= c/d then a+b/a-b=c+d/c-d
so, (cosA+sinA+cosA-sinA)/(cosA+sinA-cosA+sinA)=(1+root3+1-root3)/(1+root3-1+root3)
or 2cosA/2sinA=2/2root3
or cot A=cot 60
or A=60 degree
Answered by
59
hello users ..........
given that :-
(cosA+sinA)/(cosA-sinA) = (1 +√3) / (1- √3)
we have to find
A = ?
solution :-
here ,
(cosA+sinA)/(cosA-sinA)
= cos A ( 1 + tan A) / cos A ( 1 - tan A)
= (1 + tan A ) / ( 1- tan A )
now ,
(1 +√3) / (1- √3)
= (1 + tan 60° ) / ( 1- tan 60° )
because tan 60° = √3
now,
by comparing
(1 + tan A ) / ( 1- tan A ) and (1 + tan 60° ) / ( 1- tan 60° )
=> tan A = tan 60°
=> A = 60° answer
(::) hope it helps (::)
given that :-
(cosA+sinA)/(cosA-sinA) = (1 +√3) / (1- √3)
we have to find
A = ?
solution :-
here ,
(cosA+sinA)/(cosA-sinA)
= cos A ( 1 + tan A) / cos A ( 1 - tan A)
= (1 + tan A ) / ( 1- tan A )
now ,
(1 +√3) / (1- √3)
= (1 + tan 60° ) / ( 1- tan 60° )
because tan 60° = √3
now,
by comparing
(1 + tan A ) / ( 1- tan A ) and (1 + tan 60° ) / ( 1- tan 60° )
=> tan A = tan 60°
=> A = 60° answer
(::) hope it helps (::)
Ankit1408:
thanks bro
Similar questions