Math, asked by mamtaraj7565, 11 months ago

If cosecθ - sinθ = a3, secθ - cosθ = b3, prove that a²b²(a² + b²).

Answers

Answered by SteffiPaul
1

Given:

cosecθ - sinθ = a³   -(1)

secθ - cosθ = b³.     -(2)

To find:

Solution to a²b²(a² + b²)

Answer:

  • By solving these equations by rewriting cosec as inverse of sin and sec as inverse of cos, we get values for a^2 and b^2.
  • Equation 1,
  • \frac{1}{sin x} - sin x =a^{3}
  • \frac{1 - sin^{2} x}{sin x} =a^{3}
  • (\frac{cos^{2} x}{sin x})^{2/3} =(a^{3} )^{2/3}
  • \frac{cos^{4/3} x}{sin ^{2/3} x} = a^{2}   -(3)
  • Equation 2,
  • secθ - cosθ = b³
  • \frac{1}{cos x} - cos x = b^{3}
  • (\frac{1 - cos^{2}  x}{cos x} )^{2/3} = (b^{3})^{2/3}
  • \frac{sin ^{4/3} x}{cos ^{2/3} x} = b^{2}    -(4)
  • Multiplying 3 and 4,
  • a^{2} b^{2} = sin^{2/3} x  .cos^{2/3} x   -(5)
  • Adding 3 and 4,
  • We also get values of a²+ b²
  • a^{2}  + b^{2} = \frac{cos^{4/3} x}{sin^{2/3} x} + \frac{sin ^{4/3} x}{cos^{2/3} x}      -(6)
  • By multiplying  5 and 6 we get
  • a^{2}b^{2} (a^{2} +b^{2} ) = \frac{1}{sin ^{2/3} x cos ^{2/3} x} * sin^{2/3} x  * cos^{2/3} x

a²b²(a² + b²)= 1

Answered by tanujagautam107
0

Answer:

Step-by-step explanation:

HOPE THE ATTACHMENT HELPS U

Attachments:
Similar questions