Math, asked by bujji1491, 11 months ago

If acos3θ+3acosθsin²θ=m, asin3θ+2acos²θsinθ=n, prove that
(m+n)2/3+(m-n)2/3=2a2/3.

Answers

Answered by amitnrw
1

(∛(m + n))² +  (∛(m - n))² =  2 (∛a )²

Step-by-step explanation:

Correct Question is

m = aCos³θ  + 3aCosθSin²θ

n = aSin³θ  + 3aCos²θSinθ

m + n = aCos³θ  + 3aCosθSin²θ + aSin³θ  + 3aCos²θSinθ

= a (Cos³θ + Sin³θ)  + 3aCosθSinθ(Cosθ + Sinθ)

using x³ + y³ = ( x + y)(x² + y² - xy)

= a(Cosθ + Sinθ)(Cos²θ + Sin²θ - CosθSinθ) +  3aCosθSinθ(Cosθ + Sinθ)

= a(Cosθ + Sinθ) (Cos²θ + Sin²θ - CosθSinθ + 3CosθSinθ)

= a(Cosθ + Sinθ) (Cos²θ + Sin²θ + 2CosθSinθ)

= a(Cosθ + Sinθ)(Cosθ + Sinθ)²

= a(Cosθ + Sinθ)³

=> m + n = a(Cosθ + Sinθ)³

∛(m + n) = ∛a ( Cosθ + Sinθ)

=> (∛(m + n))² = (∛a )² ( Cosθ + Sinθ)²

m - n = aCos³θ  + 3aCosθSin²θ - aSin³θ  - 3aCos²θSinθ

= a (Cos³θ - Sin³θ)  - 3aCosθSinθ(Cosθ - Sinθ)

using x³ - y³ = ( x - y)(x² + y² + xy)

= a(Cosθ - Sinθ)(Cos²θ + Sin²θ + CosθSinθ) -  3aCosθSinθ(Cosθ - Sinθ)

= a(Cosθ - Sinθ) (Cos²θ + Sin²θ + CosθSinθ -  3CosθSinθ)

= a(Cosθ - Sinθ) (Cos²θ + Sin²θ - 2CosθSinθ)

= a(Cosθ - Sinθ)(Cosθ - Sinθ)²

= a(Cosθ - Sinθ)³

=> m - n = a(Cosθ - Sinθ)³

∛(m - n) = ∛a ( Cosθ - Sinθ)

=> (∛(m - n))² = (∛a )² ( Cosθ - Sinθ)²

(∛(m + n))² +  (∛(m - n))² =  (∛a )² ( Cosθ + Sinθ)² + (∛a )² ( Cosθ - Sinθ)²

=  (∛a )² (Cos²θ + Sin²θ + 2CosθSinθ + Cos²θ + Sin²θ - 2CosθSinθ)

= (∛a )² (1 + 2CosθSinθ + 1 - 2CosθSinθ)

= (∛a )² (2)

= 2 (∛a )²

= 2 a ^(2/3)

(∛(m + n))² +  (∛(m - n))² =  2 (∛a )²

QED

Proved

Learn more:

f a cos3 theta+3 sin2theta costheta =m

https://brainly.in/question/38083

prove that 2sinxcosx-cosx/1 -sinx+sin^2x-cos^2x=cotx

https://brainly.in/question/3338788

Similar questions