If cosecA+cotA=b prove that (b^2+1)cosA=b^2-1
Answers
Answered by
0
Given ,
b = cosecA+cotA
Making square of both sides,
b² = (1+cos²A+2cosA)/sinA
Adding 1 both sides,
b² + 1 = 2(1+cosA)/sin²A
Multiplying with cosA both sides,
(b² + 1)cosA = (2cosA+1+cos²A-sin²A)/sin²A
(b²+1)cosA = (2cosA+1+cos²A)/sin²A - 1
(b²+1)cosA = (1+cosA)²/sin²A - 1
(b²+1)cosA = [(1+cosA)/sinA]² - 1
(b²+1)cosA = (1/sinA + cosA/sinA)² - 1
(b²+1)cosA = (cosecA + cotA)² - 1
(b²+1)cosA = b² - 1
Attachments:
Similar questions