if cot theta =3/4 prove that √sec thetha -cosec thatha / sec thetha + cosec thetha = 1/√7
Answers
EXPLANATION.
→ Cot ø = 3/4.
prove = √ sec ø - Csc ø / Sec ø + Csc ø.
→ Cot ø = B/P = Base/Perpendicular.
→ Cot ø = B/P = 3/4.
By using Pythagorean theorem,we get.
→ H² = P² + B².
→ H² = (4)² + (3)²
→ H² = 16 + 9.
→ H² = 25
→ H = √25 = 5.
→ Sin ø = P/H = Perpendicular/Hypotenuse
Sin ø = 4/5.
→ Cos ø = B/H = Base/Hypotenuse = 3/5.
→ Tan ø = P/B = Perpendicular/Base = 4/3.
→ Csc ø = H/P = Hypotenuse/Perpendicular
Csc ø = 5/4.
→ Sec ø = H/B = Hypotenuse/Base = 5/3.
→ Cot ø = B/P = Base/Perpendicular = 3/4.
EXPLANATION.
→ Cot ø = 3/4.
prove = √ sec ø - Csc ø / Sec ø + Csc ø.
→ Cot ø = B/P = Base/Perpendicular.
→ Cot ø = B/P = 3/4.
By using Pythagorean theorem,we get.
→ H² = P² + B².
→ H² = (4)² + (3)²
→ H² = 16 + 9.
→ H² = 25
→ H = √25 = 5.
→ Sin ø = P/H = Perpendicular/Hypotenuse
Sin ø = 4/5.
→ Cos ø = B/H = Base/Hypotenuse = 3/5.
→ Tan ø = P/B = Perpendicular/Base = 4/3.
→ Csc ø = H/P = Hypotenuse/Perpendicular
Csc ø = 5/4.
→ Sec ø = H/B = Hypotenuse/Base = 5/3.
→ Cot ø = B/P = Base/Perpendicular = 3/4.
√sec(θ)+csc(θ)sec(θ)−csc(θ)√1
√sec(θ)+csc(θ)sec(θ)−csc(θ) √7
⟹ √5/3 -5/4/5/4+5/4=√20-15/12/20+15/12
⟹ √5/12/35/12=√5/12×√12/13
⟹ √1/7