Math, asked by sam34, 1 year ago

if diagonals of a quadrilateral are equal and bisect each other at right angle then it is square

Answers

Answered by Aashika
2
GIVEN - A SQUARE ABCD AND DIAGONALS AC AND BD BISECT AT O.
TO PROVE - AC = BD,
                    OA=OC, OB =OD
                   ∠AOB =90°
PROOF -
1) IN ΔABC AND ΔDCB
          AB=DC ( EQUAL SIDES OF SQUARE)
         ∠ABC=∠DCB (90° EACH)
         BC = CB(COMMON SIDE)
    ∴ΔABC ≡ ΔDCB (SAS RULE)
          AC=DB ( CPCT)
2) IN ΔAOB AND ΔCOD
         ∠AOB=∠COD (VERTICALLY OPPOSITE ANGLES )
         ∠ABO=∠CDO (ALTERNATE INTERIOR ANGLES )
          AB = CD ( EQUAL SIDES OF SQUARE )
    ΔAOB ≡ ΔCOD  ( AAS RULE )
      AO=CO AND OB = OD ( CPCT)
3) IN ΔAOB AND ΔCOB
         AO = CO(PROVED ABOVE)
         AB=CB ( EQUAL SIDES OF SQUARE)
         BO=BO (COMMON)
   ΔAOB≡ΔCOB ( SSS RULE)
     ∴∠AOB=∠COB ( CPCT )
    ∠AOB+∠COB=180° ( LINEAR PAIR )
      2∠AOB=180° (SINCE,∠AOB=∠COB)
       ∠AOB=180°/2
       ∠AOB=90°

THEREFORE, PROVED THAT IN A QUAD. IF DIAGONALS ARE EQUAL AND THEY PERPENDICULARLY BISECT EACH OTHER THEN THEY THE QUAD. IS A SQUARE.


Attachments:
Answered by Diksha12341
3

Step-by-step explanation:

Explanation:

______________________________

Given that,

Let ABCD be a quadrilateral

It's iagonals AC and BD bisect each other at right angle at O.

To prove that

The Quadrilateral ABCD is a square.

Proof,

In ΔAOB and ΔCOD,

⇝ AO = CO (Diagonals bisect each other)

⇝ ∠AOB = ∠COD (Vertically opposite)

⇝ OB = OD (Diagonals bisect each other)

⇝ ΔAOB ≅ ΔCOD [SAS congruency]

Thus,

⇝ AB = CD [CPCT] — (i)

also,

∠OAB = ∠OCD (Alternate interior angles)

⇒ AB || CD

Now,

⇝ In ΔAOD and ΔCOD,

⇝ AO = CO (Diagonals bisect each other)

⇝ ∠AOD = ∠COD (Vertically opposite)

⇝ OD = OD (Common)

⇝ ΔAOD ≅ ΔCOD [SAS congruency]

Thus,

AD = CD [CPCT] ____ (ii)

also,

AD = BC and AD = CD

⇒ AD = BC = CD = AB ____ (ii)

also, ∠ADC = ∠BCD [CPCT]

and ∠ADC + ∠BCD = 180° (co-interior angles)

⇒ 2∠ADC = 180°

⇒ ∠ADC = 90° ____ (iii)

One of the interior angles is right angle.

Thus, from (i), (ii) and (iii) given quadrilateral ABCD is a square.

HenceProved!

Similar questions