Math, asked by StrongGirl, 7 months ago

If distance between lines 2x - y + 3 = 0 and 4x - 2y +a = 0 is 1/root5 while distance between 2x -y + 3 = 0 and 6x - 3y +B = 0 is 2/root5 then alpha+ beta be ?

Attachments:

Answers

Answered by kasanimanikanta6
1

this question can be answered in many ways I think this may be the best way

Attachments:
Answered by amansharma264
9

ANSWER.

=> a + b = 15 + 8 = 23

EXPLANATION.

 \sf \to \: distance \: between \: line \: 2x - y + 3 = 0 \:  \: and \:  \:  \: 4x - 2y  +  \alpha  \: is \:  \dfrac{1}{ \sqrt{5} }  \\  \\  \sf \to \: distance \: between \: line \: 2x - y + 3 = 0 \: and \: 6x - 3y +  \beta  \: is \:  \frac{2}{ \sqrt{5} }

 \sf\to \: by \: using \: formula \: of \: distance \: between \: lines \\  \\  \sf \to \:  | \frac{ c_{2} -  c_{1}  }{ \sqrt{ {a}^{2}  +  {b}^{2}  } } |

 \sf \to \: from \: line \\  \\  \sf \to \:  \: (1) \: equation \: 2x - y + 3 = 0 \:  \: and \:  \: 4x - 2y +  \alpha  = 0 =  \frac{1}{ \sqrt{5} } \\  \\  \sf \to divide \: equation \: (2) \: by \: 2 \: for \: lines \: are \: equal \\  \\  \sf \to \: 2x - y +  \dfrac{ \alpha }{2}  = 0   \\  \\  \sf \to \:  | \dfrac{ \dfrac{ \alpha }{2}  - 3}{ \sqrt{ {2}^{2} + 1 {}^{2}  } } |   =   \dfrac{1}{ \sqrt{5} }  \\  \\  \sf \to \:  | \dfrac{  \dfrac{ \alpha  - 6}{2} }{ \cancel{ \sqrt{5} }} |  =  \dfrac{1}{ \cancel{ \sqrt{5} }}  \\  \\  \sf \to \:   | \alpha  - 6|  = 2 \\  \\  \sf \to \:  \alpha  = 8 \: \: and \:  \: 4

 \sf \to \: for \: line \\  \\  \sf \to \: (2) \: equation \: of \: line \: 2x - y + 3 = 0 \:  \:  \:is \:  \: 6x - 3y +   \beta  \:  \: is \:  \frac{2}{ \sqrt{5} } \\  \\  \sf \to \: divide \: equation \: (2) \:  \: by \:  \: 3 \:  \: we \: get \\  \\  \sf \to \: 2x - y +  \frac{ \beta }{3}  \\  \\  \sf \to \:  | \dfrac{ \dfrac{ \beta }{3} - 3 }{ \sqrt{ {2}^{2} +   {1}^{2}   } } |  =  \dfrac{2}{ \sqrt{5} }  \\  \\  \sf \to \:  | \beta  - 9|   = 6 \\  \\  \sf \to \:  \:  \beta  = 15 \:  \: and \:  \:  \: 3

 \sf \to \: value \: of \:  \alpha  +  \beta  \\  \\  \sf \to \: 8 + 15 = 23 = answer

Similar questions