Math, asked by akhilesh5142, 1 year ago

If f : R - {±1} → R is defined by f(x) =  log |\frac{1 + x}{1 - x}| , then show that  f [ \frac{2x}{1 + x^{2}} ] = 2 f(x).

Answers

Answered by siddhartharao77
4

Answer:

f(2x/1 + x²) = 2 f(x)

Step-by-step explanation:

Given: f(x)=log(\frac{1+x}{1-x})

f(\frac{2x}{1+x^2}):

=log(\frac{1+\frac{2x}{1+x^2}}{1-\frac{2x}{1+x^2}})

=log(\frac{1+x^2 + 2x}{1+x^2-2x})

=log(\frac{1+x}{1-x})^2

=2log(\frac{1+x}{1-x})

=\boxed{2f(x)}


Hope it helps!

Similar questions