Math, asked by aashrya, 1 year ago

if f(x) =1/1-x show f(f(f(x)=x

Answers

Answered by aquialaska
58

Answer:

Given:

f(x)=\frac{1}{1-x}

To Show: f( f( f(x) ) ) = x

Consider,

LHS

= f( f( f(x) ) )

=f(f(\frac{1}{1-x}))

=f(\frac{1}{1-\frac{1}{1-x}})

=f(\frac{1-x}{1-x-1})

=f(\frac{1-x}{-x})

=f(\frac{x-1}{x})

=\frac{1}{1-\frac{x-1}{x}}

=\frac{1}{\frac{x-x+1}{x}}

=\frac{x}{x-x+1}

=x

=RHS

Hence Proved.

Answered by pinquancaro
22

Answer and explanation:

Given : f(x)=\frac{1}{1-x}

To show : f(f(f(x)))=x

Solution :

Taking LHS,

f( f( f(x) ) )

Substitute, f(x)=\frac{1}{1-x}

=f(f(\frac{1}{1-x}))

=f(\frac{1}{1-\frac{1}{1-x}})

=f(\frac{1-x}{1-x-1})

=f(\frac{1-x}{-x})

=f(\frac{x-1}{x})

=\frac{1}{1-\frac{x-1}{x}}

=\frac{1}{\frac{x-x+1}{x}}

=\frac{x}{x-x+1}

=x

= RHS

Hence proved.

Similar questions
Math, 1 year ago