If Fig. 15.26, ABCD is a parallelogram, AE ⊥ DC and CF ⊥ AD. If AB=16 cm, AE=8 cm and CF=10 cm, find AD.
Answers
Given : ABCD is a parallelogram, AE ⊥ DC and CF ⊥ AD. AB = 16 cm, AE = 8 cm and CF = 10 cm.
In parallelogram ABCD ,
AB = CD = 16 cm (Opposite sides of a parallelogram)
CF = 10 cm and AE = 8 cm
We know that,
Area of parallelogram = Base × Altitude
Area of parallelogram ABCD with altitude AE = DC × AE
Area of parallelogram ABCD = 16 × 8
[AB = DC = 16 cm (opposite sides of a parallelogram are equal]
Area of parallelogram ABCD = 128 cm²
Area of parallelogram ABCD with altitude CF = AD × CF
128 = AD × 10
AD = 128/10 cm
AD = 12.8 cm
Hence, the value of AD is 12.8 cm.
HOPE THIS ANSWER WILL HELP YOU…..
Similar questions :
In Fig. 15.81, ABCD and CDEF are parallelograms. Prove that ar(Δ ADE) = ar(Δ BCF).
https://brainly.in/question/15909763
ABCD is a parallelogram whose diagonals intersect at O. If P is any point on BO, prove that
(i) ar(Δ ADO) = ar(Δ CDO)
(ii) ar(Δ ABP) = ar(Δ CBP)
https://brainly.in/question/15909768
Question :-
In figure, ABCD is a parallelogram, AE ⊥ DC and CF ⊥ AD. If AB = 16 cm, AE = 8 cm and CF = 10 cm, find AD.
We have :-
- AE ⊥ DC
- AB = 16 cm
- ∵ AB = CD [Opposite sides of parallelogram]
- ∴ CD = 16 cm
Now, area of parallelogram ABCD
= CD x AE
= (16 x 8)
= 128 [∵ AE = 8 cm]
_________
- Since, CF ⊥ AD
∴ Area of parallelogram ABCD
= AD x CF
⇒ AD x CF = 128 cm
⇒ AD x 10 cm = 128 [∵ CF= 10 cm]
⇒ AD = cm