Math, asked by akihsir2477, 1 year ago

If h, c and v respectively are the height the curved surface area and volume of the cone . Prove that 3πvh³-c²h²+9v²=0

Answers

Answered by ishitamogha21
16

hope this answer will help you.

Attachments:

Anonymous: hello
Anonymous: mate
Answered by Anonymous
17

AnswEr:

Let r and l denote respectively the radius of the base and slant height of the cone.

Then,

 \sf \: l =  \sqrt{ {r}^{2} +  {h}^{2}  } \\  \\  \sf \: V =  \frac{1}{3} \pi {r}^{2} h \\  \\ \sf C = \pi \: rl \\  \\  \therefore \sf \: 3\pi \: Vh {}^{3}  -  {c}^{2}  {h}^{2}  + 9 {V}^{2}  \\  \\  =  \tt \: 3\pi \times  \frac{1}{3} \pi {r}^{2} h \times  {h}^{3} -  {(\pi \: rl)}^{2} {h}^{2} + \\  \tt \: 9 \times ( \frac{1}{3}  \pi  {r}^{2} h) {}^{2}   \\  \\  =  \tt \:  {\pi}^{2}   {r}^{2} {h}^{4}  -  {\pi}^{2} {r}^{2} {l}^{2}  {h}^{2}  +  {\pi}^{2} {r}^{4} {h}^{2}    \\     \\  = \tt  {\pi}^{2}  {r}^{2} {h}^{4}   -  {\pi}^{2}  {r}^{2}  {h}^{2} ( {r}^{2}  +  {h}^{2} ) +  {\pi}^{2}  {r}^{4} {h}^{2}   \\  \\  = \tt  {\pi}^{2} {r}^{2}  {h}^{2} -  {\pi}^{2}    {r}^{4}  {h}^{2}  -  {\pi}^{2}  {r}^{2}  {h}^{2} +  {\pi}^{2}  {r}^{4} {h}^{2}   \\  \\ \tt  = 0

#BAL

#Answerwithquality

Similar questions