Math, asked by prakash59, 1 year ago

if h is the HCF of 4052 and 12576 and h=4052×A+ 12576 × B then find the value of {H + A + B}

Answers

Answered by MANKOTIA
39
please mark as brainliest answer
Attachments:
Answered by SerenaBochenek
38

Answer:

The value of H+A+B is 349

Step-by-step explanation:

Given if h is the HCF of 4052 and 12576 and h=4052×A+ 12576 × B then

we have to find the value of h + A + B

12576= 3\times 4052 +420

4052= 9\times 420 +272

420= 1\times 272+148

272= 1\times 148+124

148= 1\times 124+24

124 = 5\times 24+4

24= 6\times 4+0  

So HCF = H = 4

4= 124 - 5\times 24

 = 124 - 5 \times (148-124)

 = 6 \times 124 - 5 \times 148

 = 6\times (272-148) - 5 \times 148

 = 6\times 272 - 11\times 148

 = 6\times 272 - 11\times (420 - 272)

 = 17\times 272 - 11 \times 420

 = 17\times (4052 - 420\times 9) - 11 \times 420

 = 17 \times 4052 - 164 \times 420

 = 17 \times 4052 - 164\times (12576 - 3\times 4052)

 = 509\times 4052 -164\times 12576

Comparing with H = 4052a + 12576b, we get

H=4, A=509 and B= -164

So. H + A + B= 4+509–164=349

Similar questions