If K = {a, b, d, e, f}, L = {b, c, d, g} and M = {a, b, c, d, h} find K- (L M )
Answers
Answer:
{a, b, d, e, f}, L = {b, c, d, g} and M = {a, b, c, d, h} (i) K ∪ (L ∩ M) L ∩ M = {b, c, d, g} ∩ {a, b, c, d, h} = {b, c, d} K ∪ (L ∩ M) = {a, b, d, e, f } ∪ {b, c, d) = {a, b, c, d, e, f} (ii) K ∩ (L ∪ M) L ∪ M = {a, b, c, d, g, h} K ∩ (L ∪ M) = {a, b, d, e, f} ∩ {a, b, c, d, g, h} = {a, b, d} (iii) (K ∪ L) ∩ (K ∪ M) K ∪ L = {a, b, c, d, e, f, g} K ∪ M = {a, b, c, d, e, f, h} (K ∪ L) ∩ (K ∪ M) = {a, b, c, d, e,f} (iv) (K ∩ L) ∪ (K ∩ M) (K ∩ L) = {b, d} (K ∩ M) = {a,b,d} (K ∩ L) ∪ (K ∩ M) = {b, d} ∪ {a, b, d} = {a, b, d} Distributive laws K ∪ (L ∩ M) = (K ∪ L) ∩ (K ∪ M) {a, b, c, d, e, f) = {a, b, c, d, e, f, g} ∩ {a, b, c, d, e, f, h} = {a, b, c, d, e, f} Thus Verified. K ∩ (L ∪ M) = (K ∩ L) ∪ (K ∩ M) {a, b, d} = {a, b, c, d, e, f, g} ∪ {a, b, c, d, e, f, h} = {a, b, d}Read more on Sarthaks.com - https://www.sarthaks.com/960024/if-k-a-b-d-e-f-l-b-c-d-g-and-m-a-b-c-d-h-then-find-the-following-i-k-l-m-ii-k-l-m-iii-k-l-k-m?show=960040#a960040