Math, asked by dharmalav, 11 months ago

If log(2a-3b)=loga-logb then "a" is?

Answers

Answered by brunoconti
19

Answer:

Step-by-step explanation:

brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest

Attachments:
Answered by pinquancaro
20

The value of a is a=\frac{3b^2}{2b-1}

Step-by-step explanation:

Given : Expression \log(2a-3b)=\log a-\log b

To find : The value of 'a'?

Solution :

Step 1 - Write the expression,

\log(2a-3b)=\log a-\log b

Step 2 - Apply logarithmic property, \log a-\log b=\log \frac{a}{b}

\log(2a-3b)=\log\frac{a}{b}

Step 3 - Take anti-log both side,

2a-3b=\frac{a}{b}

Step 4 - Solve,

2ab-3b^2=a

2ab-a=3b^2

a(2b-1)=3b^2

a=\frac{3b^2}{2b-1}

#Learn more

Loga+logb=log(a+b),then a=

https://brainly.in/question/13081040

Similar questions