Math, asked by Aahil1234, 10 months ago

If log16 X + log4 x + log2 X = 14, then x =
(A) 16.
(B) 32
(C) 64
(D) None of these​

Answers

Answered by chnageswarr
6

Answer:

D)NONE OF THESE

Step-by-step explanation:

IF YOU LIKE IT, PLEASE FOLLOW ME.

Attachments:
Answered by vinod04jangid
1

Answer:

(D) None of these

Step-by-step explanation:

Given:- log_{16} x + log_{4} x + log_{2} x = 14

To Find:- Value of x.

Solution:-

Acc. to the question, log_{16} x + log_{4} x + log_{2} x = 14

As we know, acc. to logarithmic formula,

                   log_{p}  q = \frac{log q}{log p}

\frac{log x}{log 16} + \frac{log x}{log 4} + \frac{log x}{log 2} = 14

log x (\frac{1}{log 16} + \frac{1}{log 4} + \frac{1}{log 2} ) = 14

log x (\frac{1}{log 2^{4} } + \frac{1}{log 2^{2} } + \frac{1}{log 2} ) = 14    

log x (\frac{1}{4 log 2 } + \frac{1}{2log 2 } + \frac{1}{log 2} ) = 14           [∵ logx^{n} = n log x]          

log x  (\frac{1 + 2 + 4}{4log 2} ) = 14

log x  (\frac{7}{4log 2} ) = 14

log x = \frac{14 * 4log2}{7}

log x = 8 log 2

log x = log 2^{8}          [∵ n log x = logx^{n}]

x = 2^{8}

x = 256.

Hence, option (D) is the correct option.

#SPJ3

Similar questions